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This publication, Fueling Innovation and Discovery: The Mathematical Sciences in the 21st Century, is a separate product 
being released in advance of the �nal report. It is based on the committee’s identi�cation of recent advances in the 
mathematical sciences or advances enabled by mathematical sciences research, drawn from the committee’s as-
sessment of the vitality of the discipline. This report is geared toward general readers who would like to know more 
about ongoing advances in the mathematical sciences and how these advances are changing our understanding of 
the world, creating new technologies, and transforming industries. 
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areas of impact, choosing topics where information was accessible and where developments could be described in a 
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not intended to be a comprehensive selection of the most important developments in the mathematical sciences. 

The committee worked primarily with mathematics writer Dana Mackenzie to prepare this report. It greatly 
appreciates his insights and hard work. During late 2010 and 2011, appropriate topics were identi�ed, experts 
consulted, drafts prepared and revised, and accompanying images compiled. This report contains no committee 
conclusions or recommendations. 

This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical exper-
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to ensure that the report meets institutional standards for quality and objectivity. The review comments and draft 
manuscript remain con�dential to protect the integrity of the process.
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The mathematical sciences are part of everyday life. Modern 

communication, transportation, science, engineering, technol -

ogy, medicine, manufacturing, security, and �nance all depend 

on the mathematical sciences, which consist of mathematics, statistics, 

operations research, and theoretical computer science. In addition, 

there are very mathematical people working in theoretical areas of 

most �elds of science and engineering who also contribute to the 

mathematical sciences.  There is a healthy continuum between research 

in the mathematical sciences, which may or may not be pursued with 

an application in mind, and the range of applications to which math -

ematical science advances contribute.  To function well in a technologi -

cally advanced society, every educated person should be familiar with 

multiple aspects of the mathematical sciences.

Although the mathematical sciences are pervasive, they are often invoked without 
an explicit awareness of their presence. For example, in the everyday operation of 
making a cell phone call, the mathematical sciences are essential in every step: We 
enter numbers in the decimal system, which are converted into sequences of bits (zeros 
and ones); next comes conversion to an electromagnetic signal; after an available 
receiver is located, the signal is transmitted and (�nally) converted into the sound of 
our voice. Wireless technology uses techniques called “error correcting codes,” “linear 
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and nonlinear �ltering,” “hypothesis testing,” 
“spatial multiplexing,” “statistical waveform 
or parameter estimation,” and these are built 
on tools of the mathematical sciences, such as 
matrix analysis, linear algebra, algebra, random 
matrices, graphical models, and so on.

More generally, the mathematical sciences 
contribute to modern life whenever data must 
be analyzed or when computational modeling 
and simulation is used to enable design and 
analysis of systems or exploration of “what-if” 
scenarios.  The emergence of truly massive 
data sets across most �elds of science and 
engineering, and in business, government, 
and national security, increases the need 
for new tools from the mathematical sciences.  Because the mathematical sciences 
are independent of a particular scienti�c context, they can facilitate the translation of 
advances from one discipline to another.  

The mathematical sciences provide a 
language—numbers, symbols, graphs, and 
diagrams—for expressing ideas in everyday life as 
well as in science, engineering, medicine, business, 
and the arts. Mathematical symbols, which are 
more universal than Chinese, English, or Arabic, 
allow communication across communities with 
completely dissimilar spoken and written languages.

The stories told here describe a number of 
recent advances made possible by research in the 
mathematical sciences.

http://www.nap.edu/13373
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In the last two decades, two separate revolutions have brought digital media out of 
the pre-Internet age.  Both revolutions were deeply grounded in the mathematical 
sciences.  One of them is now mature, and you bene�t whenever you go to a movie 

with computer-generated animation.  The other revolution has just begun but is already 
rede�ning the limits of feasibility in some areas of biological imaging, communication, 
remote sensing, and other �elds of science.

The �rst could be called the “wavelet revolution.” Wavelets are a mathematical method 
for isolating the most relevant pieces of information in an image or in a signal of any kind 
(acoustic, seismic, infrared, etc.).  There are coarse wavelets for identifying general features 
and �ne wavelets for identifying particular details.  Prior to wavelets, information was 
represented in long, cumbersome strings of bits that did not distinguish importance. 

The central idea of wavelets is that for most real-world images, we don’t need all the 
details (bytes) in order to learn something useful.   In a 10-megapixel image of a face, 
for instance, the vast majority of the pixels do not give us any useful information.  The 
human eye sees the general features that connote a face—a nose, two eyes, a mouth—
and then focuses on the places that convey the most information, which tend to be 
edges of features.  We don’t look at every hair in the eyebrow, but we do look at its 
overall shape.  We don’t look at every pixel in the skin, because most of the pixels will be 
very much like their neighbors.  We do focus on a patch of pixels that contrast with their 
neighbors—which might be a freckle or a birthmark or an edge.

Now much of this information can be represented much more compactly as the 
overlapping of a set of wavelets, each with a different coef�cient to capture its weight 
or importance.  In any typical picture, the weighting amplitude of most of the wavelets 
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will be near zero, re�ecting the absence of features at that particular scale.  If the model 
in the photograph doesn’t have a blemish on a particular part of her skin, you won’t 
need the wavelet that would capture such a blemish.  Thus you can compress the 
image by ignoring all of the wavelets with small weighting coef�cients and keeping only 
the others.  Instead of storing 10 million pixels, you may only need to store 100,000 
or a million coef�cients.  The picture reconstructed from those coef�cients will be 
indistinguishable from the original to the human eye. 

Curiously, wavelets were discovered and rediscovered more than a dozen times 
in the 20th century—for example, by physicists trying to localize waves in time and 
frequency and by geologists trying to interpret Earth movements from seismograms.  In 
1984, it was discovered that all of these disparate, ad hoc techniques for decomposing a 
signal into its most informative pieces were really the same.  This is typical of the role of 
the mathematical sciences in science and engineering:  Because they are independent of 
a particular scienti�c context, the mathematical sciences can bridge disciplines.  

Once the mathematical foundation was laid, stronger versions of wavelets were 
developed and an explosion of applications occurred.  Some computer images could be 
compressed more effectively.  Fingerprints could be digitized.  The process could also 
be reversed: Animated movie characters could be built up out of wavelets.  A company 
called Pixar turned wavelets (plus some pretty good story ideas) into a whole series of 
blockbuster movies (see Figure 1).

In 2004, the central premise of the wavelet revolution was turned on its head 
with some simple questions: Why do we even bother acquiring 10 million pixels of 
information if, as is commonly the case, we are going to discard 90 percent or 99 
percent of it with a compression algorithm?  Why don’t we acquire only the most 
relevant 1 percent of the information to start with?  This realization helped to start a 
second revolution, called compressed sensing.

Answering these questions might appear almost impossible.  After all, how can we 
know which 1 percent of information is the most relevant until we have acquired it all?  
A key insight came from the interesting application of how to reconstruct a magnetic 
resonance image (MRI) from insuf�cient data.  MRI scanners are too slow to allow them 
to capture dynamic images (videos) at a decent resolution, and they are not ideal for 
imaging patients such as children, who are unable to hold still and might not be good 
candidates for sedation.  These challenges led to the discovery that MRI test images 
could, under certain conditions, be reconstructed perfectly—not approximately, but 
perfectly—from a too-short scan by a mathematical method called L1 (read as “ell-
one”) minimization.  Essentially, random measurements of the image are taken, with 
each measurement being a randomly weighted average of many randomly selected 
pixels.  Imagine replacing your camera lens with a kaleidoscope.  If you do this again 
and again, a million times, you can get a better image than you can from a camera 
that takes a 10-megapixel photo through a perfect lens.

�������������������
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The magic lies, of course, in the mathematical sciences.  Even though there may 
be millions of scenes that would reproduce the million pictures you took with your 
kaleidoscopic camera, it is highly likely that there will be only one sparse scene that 
does.  Therefore, if you know the scene you photographed is information-sparse (e.g., 
it contains a heart and a kidney and nothing else) and measurement noise is controlled, 
you can reconstruct it perfectly.  L1 minimization happens to be a good technique for 
zeroing in on that one sparse solution.  Compressed sensing actually built on, and helped 
make coherent, ideas that had been applied or developed in particular scienti�c contexts, 
such as geophysical imaging and theoretical computer science, and even in mathematics 
itself (e.g., geometric functional analysis). Lots of other reconstruction algorithms are 
possible, and a hot area for current research is to �nd the ones that work best when the 
scene is not quite so sparse.

As with wavelets, seeing is believing.  Compressed sensing has the potential to cut 
down imaging time with an MRI from 2 minutes to 40 seconds.  Other researchers have 
used compressed sensing in wireless sensor networks that monitor a patient’s heartbeat 
without tethering him or her to an electrocardiograph.  The sensors strap to the patient’s 
limbs and transmit their measurements to a remote receiver.  Because a heartbeat is 
information-sparse (it’s �at most of the time, with a few spikes whose size and timing 
are the most important information), it can be reconstructed perfectly from the sensors’ 
sporadic measurements. 

Compressed sensing is already changing the way that scientists and engineers 
think about signal acquisition in areas ranging from analog-to-digital conversion to 
digital optics and seismology.  For instance, the country’s intelligence services have 
struggled with the problem of eavesdropping on enemy transmissions that hop from one 
frequency to another.  When the frequency range is large, no analog-to-digital converter 
is fast enough to scan the full range in a reasonable time.  However, compressed sensing 
ideas demonstrate that such signals can be acquired quickly enough to allow such 
scanning, and this has led to new analog-to-digital converter architectures.

Ironically, the one place where you aren’t likely to �nd compressed sensing used, 
now or ever, is digital photography.  The reason is that optical sensors are so cheap; 
they can be packed by the millions onto a computer chip.  Even though this may be a 
waste of sensors, it costs essentially nothing.  However, as soon as you start acquiring 
data at other wavelengths (such as radio or infrared) or in other forms (as in MRI scans), 
the savings in cost and time offered by compressed sensing take on much greater 
importance.  Thus compressed sensing is likely to continue to be fertile ground for 
dialogue between mathematicians and all kinds of scientists and engineers.
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In 1997, when Sergey Brin and Larry Page were graduate students at Stanford, they 
wrote a short paper about an experimental search engine that they called Google. Brin 
and Page’s idea—which was based on the research of many mathematical scientists—

was to give each Web page a ranking, called PageRank, that indicates how authoritative 
it is.  Your PageRank will improve if a lot of other Websites link to your Website.  
Intuitively, those other pages are casting a vote for your page.  Also, Brin and Page 
assumed that a vote from a page that is itself quite authoritative should count for more.  
Thus your PageRank is a function of the PageRanks of all the pages that link to you.

The genius of Brin and Page’s PageRank was its ability to harness human judgments 
without explicitly asking for them.  Every link to a Web page is an implicit vote for the 
relevance of that page.  In an exploding Internet, its simplicity also turned out to be 
of paramount importance.  The calculation could be done of�ine, and thus it could be 
applied to the entire Web. PageRank represented a major advance over approaches to 
Internet search that were based on matching words or strings on a page. These earlier 
search engines returned far too many results, even in a drastically smaller Internet than 
today.

The PageRank algorithm seems to pose a chicken-and-egg paradox: To compute one 
PageRank, you already need to know all of the other PageRanks.  However, Brin and Page 
recognized that this challenge is a form of a well-known type of math problem, known 
as the eigenvector problem.  A vector (in this case) is just a list of numbers, such as the 
list of the PageRanks of all pages on the Web.  If you apply the PageRank algorithm to a 
collection of vectors, most will be changed, but the true PageRank vector persists:  It is 
not changed by the algorithm.
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This kind of “persistent” vector is known in mathematics as an eigenvector (eigen 
being the German word for “characteristic”).  Eigenvectors have appeared in numerous 
contexts over the centuries.  The concept (though not the terminology) �rst arose in the 
work of the 18th century mathematician Leonhard Euler on the rotation of solid bodies.  
Because any rotation in space must have an axis—a line that persists in the same direction 
throughout the rotation—Euler recognized that the axis and angle of rotation characterize 
the rotation (which justi�es the term “characteristic,” at least in this context).

Fast forward a century or so, and you �nd eigenvectors used again in quantum 
physics.  The motion of electrons is described by Schrödinger’s equation, formulated in 
1926 by Austrian physicist Erwin Schrödinger.  They do not orbit atomic nuclei in circles 
or ellipses in the way that planets orbit the Sun.  Instead, their orbits form complicated 
three-dimensional shapes that are determined by the eigenvectors of Schrödinger’s 
equation.  By counting the number of these solutions, you can tell how many electrons 
�t in each energy level or orbital of an atom, and in this way you can start to explain the 
patterns and periodicities of the periodic table.

Fast forward again to the present, and you can �nd the same concept used in 
genomics.  Imagine that you have a large array of data; for example, the level of activity 
of 3,000 genes in a cell at 20 different times.  Although the cell has thousands of genes, 
it does not have that many biologically meaningful processes.  Some of the genes 
may work together to repel an invader.  Other genes may be involved in cell division 
or metabolism.  But the rest may not be doing much of anything, at least while you 
are watching them; their activity just amounts to random noise.  The eigenvectors of 
the data set correspond to the most relevant patterns in the data, those which persist 
through the noise of chance variation. Figure 2 (on page 10) shows networks of genes 
found using eigenvectors.  One eigenvector (the term “eigengene” has even been coined 
here) might correspond to genes that control metabolism.  Another might consist of 
genes activated during cell division.  The mathematics identi�es the gene networks that 
appear most tied to biological activity, but it cannot tell what the networks do.  That is 
up to the biologist. 

Singular value decomposition (SVD) is a purely mathematical technique to pick 
out characteristic features in a giant array of data by �nding eigenvectors.  The idea is 
something like this: First you look for the one vector that most closely matches all of the 
rows of data in the array; that is the �rst eigenvector.  Then you look for a second vector 
that most closely matches the residual variations after the �rst eigenvector has been 
subtracted out.  This is the second eigenvector.  The process can, of course, be repeated. 
For the PageRank example, only the �rst eigenvector is used.  But in other applications, 
such as genomics, more than one eigenvector may be biologically signi�cant.  

Given the general applicability of eigenvector approaches, perhaps it is not too 
surprising that Google’s PageRank—an algorithm that involves no actual understanding 
of your search query—could rank Web sites better than algorithms that attempted to 
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analyze the semantic content of Web pages.  However, 
the ability to use this eigenvector approach with real data 
that are random or contain much uncertainty is the key to 
PageRank.  Within a few years, everybody was using Google, 
and “to google” had become a verb. When Brin and Page’s 
company went public in 2004, its initial public stock offering 
raised $27 billion.

In many other applications, �nding eigenvectors 
through SVD has proved to be effective for aggregating 
the collective wisdom of humans.  From 2006 to 2009, 
another hot Internet company ran a competition that led to 
a number of advances in this �eld. 

Net�ix, a company that rents videos and streams media 
over the Internet, had developed a proprietary algorithm 
called Cinematch, which could predict the number of stars 
(out of �ve) a user would give a movie, based on the user’s past ratings and the ratings 
of other users.  However, its predictions were typically off by about 0.95 stars.  Net�ix 
wanted a better way to predict its customers’ tastes, so in 2006 it offered a million-dollar 
prize for the �rst person or team who could develop an algorithm that would be 10 
percent better (i.e., its average error would be less than about 0.85 stars).  The company 
publicly released an anonymized database of 100 million past ratings by nearly half a 
million users so that competitors could test their algorithms on real data.

Rather unexpectedly, the most effective single method in the competition turned 
out to be good old-fashioned SVD.  The idea is roughly as follows: Each customer has 
a speci�c set of features that they like in a movie—for instance, whether it is a drama 
or a comedy, whether it is a “chick �ick” or a “guy �ick,” or who the lead actors are.  A 
singular value decomposition of the database of past ratings can identify the features that 
matter most to Net�ix customers.  Just as in the genomics example, the mathematical 
sciences cannot say what the features are, but they can tell when two movies have the 
same constellation of factors.  By combining a movie’s scores for each feature with the 
weight that a customer assigns to those features, it can predict the rating the customer 
will give to the movie.

The team that won the Net�ix Prize combined SVD with other methods to reach 
an improvement of just over 10 percent.  Not only that, the competition showed that 
computer recommendations were better than the judgment of any human critic.  In 
other words, the computer can predict how much your best friend will like a movie 
better than you can.

The above examples attest to the remarkable ability of eigenvector methods (often 
in combination with other techniques) to extract information from vast amounts of 
noisy data.  Nevertheless, plenty of work remains to be done.  One area of opportunity 
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is to speed up the computation of eigenvectors.  Recently mathematicians have found 
that “random projections” can compress the information in a large matrix into a smaller 
matrix while essentially preserving the same eigenvectors.  The compressed matrix 
can be used as a proxy for the original matrix, and SVD can then proceed with less 
computational cost.

	 One of Google’s biggest challenges is to guard the integrity of PageRanks 
against spammers.  By building up arti�cial networks of links, spammers undercut the 
underlying assumption that a Web link represents a human judgment about the value 
of a Web page.  While Google has re�ned the PageRank algorithm many times over 
to ferret out fake links, keeping ahead of the spammers is an ongoing mathematical 
science challenge.

 

2 / When the gene expressions for the C57BL/6J and A/J strains of mice are compared, it is possible 
to �nd gene networks using eigenvectors that are speci�c for brain regions, independent of genetic 
background.  Image from S. de Jong, T.F. Fuller, E. Janson, E. Strengman, S. Horvath, M.J.H. Kas, and 
R.A. Ophoff, 2010, Gene expression pro�ling in C57BL/6J and A/J mouse inbred strains reveals gene 
networks speci�c for brain regions independent of genetic background, BMC Genomics  11:20. /
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Computer simulations, which are built on mathematical modeling, are used daily 
in scienti�c research of all types, for informing decision making in business and 
government, including national defense, and for designing and controlling 

complex systems such as those for transportation, utilities, and supply chains, and so on.  
Simulations are used to gain insight into the expected quality and operation of those 
systems and to carry out what-if evaluations of systems that may not yet exist or are not 
amenable to experimentation.  

As an example, one of the most important and spectacular events in the universe 
is the explosion of a star into a supernova.  Such explosions seeded our own solar 
system with all of its heavier elements; they also have taught us, indirectly, a great deal 
about the size, age, and composition of our universe.  But within our galaxy, the Milky 
Way, supernovas are exceedingly rare.  How can you study something that cannot be 
duplicated in a laboratory, would fry you if you got close to it, and rarely even occurs?  

That is where mathematical sciences enter the story, via computer simulation.  In 
scores of applications, from physics to biology to chemistry to engineering, scientists use 
computer models—whose construction requires the formulation of mathematical and 
statistical models, the development of algorithms, and the creation of software—to study 
phenomena that are too big, too small, too fast, too slow, too rare, or too dangerous to 
study in a laboratory.  

While scientists and engineers have long been able to write down equations to 
describe physical systems, before the computer age they could only solve the equations 
in certain highly simpli�ed cases, literally using a pen and paper or chalk and a 
blackboard.  For example, they might assume the solutions were symmetric, or simplify a 
problem to two or three variables, or operate at only one size scale or time scale.
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Now, however, the scienti�c universe has changed.  The study of supernovas is 
a perfect case in point.  It is possible to create a rudimentary theory of supernovas 
by assuming that the star is perfectly symmetrical.  Astrophysicists call this a one-
dimensional theory because all of the quantities depend on one parameter, the distance 
from the center of the star.  Unfortunately, it doesn’t work: You can’t get a one-
dimensional star to explode, and so simulations based on that simpli�ed model cannot 
represent all of the important aspects of this complex system.  Of course, real stars are 
not so symmetric; they bulge at the equator, due to rotation.  So astrophysicists began 
to simulate stars with a shape parameter as well as a size parameter, and they called 
these two-dimensional simulations.  However, such simulations still cannot capture the 
behaviors of interest:  Some fail to explode, while others explode but with less energy 
than a real supernova.

Only with fully three-dimensional simulations have astrophysicists started to 
produce supernovas with realistic energy outputs.  And this tells us something 
important: The energy of the supernova must be coming from convection, a process 
that cannot be properly modeled in two dimensions.  In a supernova, the core of a 
star collapses and then rebounds outward, forming an expanding shock wave.  The 
shock wave then stalls as it runs into matter falling in from the outside the star.  That’s 
the hurdle that two-dimensional simulations have trouble getting over.  But in three 
dimensions, the matter inside the shock wave starts to churn as it is irradiated by 
neutrinos, like soup being heated in a microwave oven.  This convection reenergizes 
the shock wave over a period of several seconds, and the star’s contents explode out 
into the universe (see Figure 3).

While many are aware of the amazing gains in raw speed from Moore’s law—the 
approximate doubling of computer hardware capabilities every 2 years—successful 
simulation on this scale also depends to an equal degree on new algorithms that perform 
the needed computations.  For example, the transition from two to three dimensions 
invariably increases (usually by an enormous factor) the dif�culty of a problem, requiring 
mathematical advances in representing reality as well as problem solving. Three-
dimensional simulations on this scale are possible only through a combination of massive 
computing power and smart mathematical algorithms. The transition from a two- to 
a three-dimensional model requires more than simply running the same code with 
more data points. Often, new mathematical representations must be incorporated to 
capture new phenomenology, and new comparisons against theory must be made to 
assess the validity of the resulting three-dimensional model. More generally, advances 
in mathematics and statistics and improved algorithms provide leapfrog advances in 
computational capabilities. Scholarly studies have estimated that at least half of the 
improvement in high-performance computing capabilities over the past 50 years can be 
traced to advances in mathematical sciences algorithms and numerical methods rather 
than to hardware developments alone.  
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The value of simulation is not limited to real-world problems of huge scale: It is just 
as useful for tiny problems such as understanding processes within our cells.  Many of 
the cell’s functions are carried out by proteins—large molecules that fold into a precise 
shape to accomplish a particular task.  For example, the proteins in an ion channel, 
which regulates the �ow of ions across a cell membrane, need to fold autonomously 
into a pore that will admit a potassium atom into the cell but not a sodium atom.  A 
mistake at the subcellular level can have implications that affect the whole body.  In 
cystic �brosis the channels that are supposed to transport chlorine ions don’t work 
correctly, possibly resulting in a buildup of �uid in the lungs; in certain kinds of heart 
arrhythmias, the potassium channels do not properly regulate the movement of 
potassium ions, which can interfere with the normal muscle contractions that create 
each heartbeat.

At present, nobody knows how to take the chemical formula for a protein and 
predict the shape it will fold into.  The shape is determined by the forces between 
the many atoms within the protein and between those atoms and their surroundings.  

4 /  Anton, a special-purpose supercomputer, is capable of performing atomically detailed simula-
tions of protein motions over periods 100 times longer than the longest such simulations previously 
reported.  These simulations are now allowing the examination of biologically important processes 
that were previously inaccessible to both computational and experimental study.  Printed with per-
mission from D.E. Shaw Research. /
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